Edition 4 of “This May Be a Dumb Question, but…”

This Blog Series is written by Exertis Almo's Business Development Managers: 
Ashley Nichols, CTS, DSCE, and John Borns, CTS, DSCE.

Welcome to our 4th and final issue focusing on projection topics. The most commonly asked questions we receive to have do with determining screen size, throw ratio, and brightness. We’re going to attempt to tackle those here today. To get here, we first wanted to make sure that you were knowledgeable enough to be dangerous when it comes to picking out screens and determining which TYPE of projector you need. If you’re coming in late on this, see our previous posts – edition 2 or edition 3WARNING: This may take a teensy bit of math, so get out your scratch paper!

FIRST UP: We need to understand aspect ratio.(1)

Simply put, aspect ratio is the relationship between the width and the height of a screen. It’s critical to know this so that we can ensure that the shape of projected image fits neatly within the screen. Every projector has a native aspect ratio, so ideally, you can pair a screen and projector with this information. Fortunately, this isn’t too much of a challenge, as MOST modern professional projectors can be programmed to support all sorts of aspect ratios. Why is this? Basically, the projector needs to be able to support anything you plug into it (computers, Blu-rays, you name it). Additionally, projectors don’t have the same lifespan as screens, so it’s very likely that you will need to match a new projector to an old screen. If someone took down the old projector and punted it into the sea before you had chance to know what it was, you can confidently install a new projector and trust it can adapt to the screen. Below are some common aspect ratios, and more specifically, the most common aspect ratios you will see in projection are 16:9, 16:10, and occasionally still a 4:3. The others are more commonly seen in LCD’s, gaming monitors, IMAX, etc., so we will ignore them for now.

ASPECT RATIO POSSIBLE RESOLUTIONS OTHER FORMS YOU WILL SEE
32:9 3840×1080, 5120×1440, 7680×2160 DFHD, DQHD, 32:9, DUHD
21:9 2560×1080, 3440×1440, 3840X1600, 5120×2160 21:9 Ultrawide
16:9 1280×720, 1366×768, 1600×900, 1920×1080, 2560×1440, 3840×2160, 5120×2880, 7680×4320 HD, FHD, 4K UHD, 8K UHD
16:10 1280×800, 1920×1200, 2560×1600 WUXGA, WXGA, WQXGA
4:3 1400×1050, 1440×1080, 1600×1200, 1920X1440, 2048X1536 XGA, SDTV

*Note: ‘other forms’ does not encompass all possibilities, just some of the most common forms

To calculate Aspect ratio when you aren’t sure what you have, the formula is Width divided by Height (W/H=AR). For example, pretend you have a screen that you measure and it is 125” wide by 70” high. 125” divided by 70” is 1.777. BEFORE you say, “Ashley, that is NOT on this list of aspect ratios!”— here is a handy tool to convert to nomenclature that is more common:

ASPECT RATIO ALSO ASPECT RATIO
16:9 1.78:1
16:10 1.6:1
4:3 1.33:1
21:9 2.33:1

These calculations MEAN the same thing: for every 16 units wide, there are 9 units high, or for every 1.777 units wide, there is 1 unit high. If you’re using an old fashioned calculator on your desk instead of some of the calculation tools out there on the World Wide Web, then you will see these decimals and can easily convert over to the more commonly used terms on the left.

SECOND UP: Throw ratio.(2)

Why do you need this? Well, if the aspect ratio is making sure you have the right shape of screen, the throw ratio will help make sure you have the right lens on the projector in relation to where you are mounting it, so that your image fills the screen to your liking. To calculate the throw ratio, you divide the distance from the projector by the width of the screen (D/W=TR). For example, you have 10.42 ft wide screen and you are mounting this bad boy 15ft away, you take 15ft/10.42ft= 1.439. Your throw ratio is 1.44:1, and you find the lens that fits that.

An important reminder is to make sure that you convert feet to inches (or vice versa) when doing your calculations. I’m commonly ask to recommend a screen for 125” wide screen that’s being mounted 15’ away. It would not look great for me to recommend a 1875:1 lens here – which is what you get if you don’t convert 15 feet into 180 inches. More commonly, I get requests such as, “I want to use XYZ projector, I have 164-inch diagonal screen and am mounting this 15ft away: which lens do I need?” I don’t know the width, but I do know the diagonal, so I can either ask for the width to be exact, or I can head over to this tool: http://screen-size.info/, pick out the Aspect Ratio, and find the width. If they give you another bit of info, like the height, then you can dig in the recesses of your brain and use the Pythagorean Theorem to manually calculate the width, but around here, we work smarter, not harder, so feel free to use the cheater tool.

LAST, not least (& probably the most difficult to calculate): How bright do I need my projector to be?

Why do I say this is harder to calculate? Because there are a lot of different variables in the room that affect the ability to see an image, and also, it’s subjective. If you have great eyes and can see the image just fine but someone who struggles a little more can’t make out the details, then that projector probably isn’t bright enough for the space or is even too bright (see Washout from edition 3), even if you think it is fine. There are general standards out there that can be adhered to, though, so we will go over those here briefly and you can build on that knowledge later with more research, if you want. If you read editions 2 and 3, then you have heard us say that projector brightness is measured in Lumens. You may see ANSI Lumens or Center Lumens, and these can be different numbers. Why is this? ANSI Lumens are defined by the American National Standards Institute, and “measures the overall amount of light the projector delivers.” Center Lumens just measures the “center spot,” which is likely the brightest spot on the screen, since no projector can deliver uniform brightness across the entire screen, so “center lumens” is likely a higher number than ANSI lumens. I wouldn’t say that one is better than the other, and neither can the industry at large, because you will see different people duke it out over why they prefer one to the other, but just note that they are different.

Ok, so, where am I going with this? You just want to know how bright the projector needs to be, and I’m giving you a vocab test. Well, bear with me, because here is one more term that I need you to know, and that is Foot lamberts. 👣 Yes, this is a real term. Once you’re finished chuckling, here is why you need to know what they are: these help you determine if the placement of your projector creates a viewable image in your room. By following these guidelines, you can determine if you are going with the 5,000 lumen projector or the 7,000 lumen projector. To do so, the formula is (Projector Lumens ÷ Screen Area) x Screen Gain = ftL

FOOT LAMBERTS AMBIENT LIGHT EXAMPLES
16 – 29 Dark Room Home theaters
30 – 39 Low Ambient Light Darkened rooms, no windows, etc.
40 – 59 Medium Ambient Light Classrooms, well-lit conference rooms
60+ High Ambient Light Auditoriums, lecture halls, etc.

The previous chart will help you determine if you are in the right ball park for brightness. Let’s pretend you have a 220” screen with 1.0 gain (see edition 2 where John talks about screen gain) in a lecture hall, and you got a great deal on a 7,000 lumen projector. Will it work? (7,000 lumens / 150sq.ft ) x 1.0= 47 ftL. Assuming the auditorium is well lit and has a lot of ambient light, this is probably NOT a good fit for the space. Something in the 9,000 lumens or more range would be better suited because it is 60ftL or more.

There are handy calculators out there on the web to assist you in this math so you don’t have to keep doing it yourself, but the next time someone comes to you asking for a suggestion, if you have bits of this info, you can help narrow down their search, and more importantly, be the hero!

Vocab Test Time!

Are these the most detailed definitions? No – we are not a dictionary, nor the AVIXA CTS Prep book. Will someone message us after still telling us how much we missed? Possibly. Will these get you a basic working knowledge of these terms and why they matter? We hope so. Plus, we are 99% sure they will help you shave a few strokes off your golf game. ⛳

  1. Aspect Ratio – the relationship of the height and width of your image (i.e. 4:3, 16:9, 16:10). Essentially, describes the shape of the screen.
  2. Throw Ratio – the relationship of the distance from a projection screen and the width of the screen. If you have these two pieces of information, you can easily calculate your throw ratio to determine which projector lens you need if a manufacturer doesn’t have a lens calculator on their website.
  3. Foot lamberts – Yes, this is a real measurement. Essentially, it is a unit of measurement used to determine how bright you need your projector to be. If you want to get more technical, it is equal to one circular candela per square foot (if this seems like a silly term, take it up with the Society of Motion Picture and Television Engineers who use it).
  4. Frank Lambert – Patriarchal figure in the Emmy Winning show ‘Step by Step.’

Thanks for Reading and Asking Your Questions!

Do you have more ‘dumb’ questions? Share your questions here and we will get you an answer.

Did you find this blog post helpful? Connect with us and #TeamExertisAlmo over on LinkedIn.

Ashley Nichols, Dir BizDev

Ashley Nichols | CTS, DSCE

Director of Business Development

 

Supported Manufacturers: Sony

John Borns, BDM

John Borns | CTS, DSCE

Business Development Manager

 

Supported Manufacturers: Legrand AV (NE, SE, MW) – Chief, C2G, Da-Lite, Luxul, Middle Atlantic, Vaddio, Wiremold

Edition 3 of “This May Be a Dumb Question, but…”

This Blog Series is written by Exertis Almo's Business Development Managers: 
Ashley Nichols, CTS, DSCE, and John Borns, CTS, DSCE.

Welcome back to the 3rd installment of “This may be a dumb question, but…” In Edition 2, we began exploring the vast world of projection and it’s many facets, but specifically, we went over the differences in Laser vs. Lamp projection, as well as the foundation for choosing the best projection screen, so if you want to start there, here is a link to Edition 2.

Since projection has so many layers to picking the right solution, we are going to continue drilling down. On to the questions!

QUESTION
What is the difference between all the different projector technologies? I see 3LCD, DLP, LCOS, Laser, Lamp, etc., and I don’t understand what the difference is and when to use them.

ANSWER

In every technology installation, it is important to know the full scope of what your client is trying to accomplish. Seems simple, but you would be surprised how often the details do not come with the request. It’s not just about if you can rattle off all the projector specs. What sort of experience do they want? Do they need color accuracy because they need the best possible picture? Are they just looking at random power points and are looking for a budget option? Is it in a setting where they need a very quiet projector? There are MANY more questions involved in this decision, which we will look into more in the next few editions, but the answers to some of these questions could narrow down or determine which ‘color source’ or ‘chipset technology’ you will go with once you have decided on the laser or lamp dilemma. Before we move on, I’d scoot down to the ‘Vocab Test’ and refresh your memory on the 3 main projector technologies we see today in the Pro AV space.

Alright, on to the cheat sheet. To break it down as simply as possible, we’ve created a brief guide below.

Note: this is not the most comprehensive list of Pros and Cons, and like everything else in AV, it is subject to interpretation and experiences, but this can help those little light bulbs go off in your head when your customer starts describing their upcoming projects:

TECHNOLOGY VERTICALS BEST SERVED PROS CONS LASER OR LAMP?
1 or 3 chip DLP1 -Education
-Corporate
-House of Worship
-Bars/Restaurants
-Museums
-Large Venues
-Cinema
-Simulators
-Deep Blacks
-DLP uses mirrors to reflect light, so there is no degradation over time (aka longer lifespan)
-Minimal motion blur
-Doesn’t appear as bright as LCD
-‘Rainbow effect’ due to the spinning wheel in 1-chip models
Can be both
3LCD2 -Education
-Corporate
-House of Worship
-Bars/Restaurants
-Museums
-Large Venues
-Most cost-effective up front
-Higher brightness for comparably priced models
-Most portable
-LCD degrades overtime, causing brightness and picture degradation
-Motion blur can be an issue
Can be both
LCoS3 -Corporate
-Cinema
-Simulators
-Museums
-One of the best native contrast options
-Deep blacks
-Native 4k in most cases
-Heavier and not as portable
-Like LCD, LCoS can have an issue with motion blur in fast scenes
-Expensive
Can be both

In Edition 4, we will discuss the next step in our process once we determine lamp or laser, and which projector type (DLP, LCD, or LCoS) – which is determining placement of the projector, how bright we need it based on our room, and screen size. It will require some math, so bring your scratch paper. ✍️

QUESTION
I’ve noticed that sometimes projection screens aren’t always white. Sometimes they’re off-white, or gray. Why would that be?

ANSWER

I’ll answer your question by starting with a fun fact!The term “silver screen” was coined in 1920s when projection screen manufacturers and theater houses started using silver paint on screen surfaces. At the time they found that a silver screen made the images “pop” more, provided better contrast4 (very important in black and white films), and reduced blurriness and washing out of the images. This makes sense if you really think about how reflective the color white can be. If you’ve ever walked outside on a sunny day when the ground is covered in snow, you know how incredibly reflective and blinding pure white snow can be. Have you ever been blinded by the gray snow on the side of the road after the plows?

There’s really two advantages that come from using a screen that is gray instead of white. Firstly, by reducing the overall reflectiveness/reflectivity/reflection-factor of a screen, you can avoid the projected image from being blindingly bright (washout5). Well, in addition to combating washout, it can also help with ambient light issues. In the last issue, we covered how ambient light in the room can interfere with the projected light you actually want to see.

Another way combat that issue is by using a darker screen. The gray material will absorb the ambient light better and allow the desired light to shine (pun definitely intended) through. Additionally, just as in the 1920s, using a gray screen can help improve the quality of motion pictures. Technically speaking, projectors can’t project the color black. So, if you’re watching a dark action movie, like John Wick (which you totally should be, because it rules), then you’re going to want to be able see the action clearly and crisply. Having a darker screen will help the projector produce dark colors better, and allow for deeper contrast, which will help the action and figures stand out more clearly. Now, this isn’t to say that you should always use a gray screen, there are many situations in which a white screen will work just fine. surface-reflection-toolThe brightness of the projector, the projector technology being used (see previous question), the light in the room, the intended uses of the system, and the budget, are all key factors that you need to consider when building a projection system. The important thing is to make the right choice by evaluating all of the factors. There are many tools out there that can help you determine which screen surface is right for you. I personally like this one that our friends at Dalite have come out with 📽️ surface selection tool.   [click image to enlarge →]

Vocab Test Time!

Are these the most detailed definitions? No – we are not a dictionary, nor the AVIXA CTS Prep book. Will someone message us after still telling us how much we missed? Possibly. Will these get you a basic working knowledge of these terms and why they matter? We hope so. Plus, we are 99% sure they will help you impress your grandparents when you reset their WiFi.

  1. DLP – Stands for ‘Digital Light Processing,’ a type of chipset in display and projector technology that uses reflective surfaces/mirrors and color wheels to project light and color onto the screen.
  2. LCD or 3LCD – Stands for ‘Liquid Crystal Display,’ or ‘3 [Chipset] Liquid Crystal Display,’ which is a type of chipset that uses the white light from the source (lamp or laser) and reflects them through 3 light panels. The projector controls how much light passes through these panels to then create the image on the screen.
  3. LCoS – Stands for ‘Liquid Crystal on Silicon,’ which is a little bit of a mix between LCD and DLP technology. LCoS projectors use the mirrors of a DLP projector with the liquid crystal panels of an LCD to create bright, beautiful images, but without the ‘rainbow effect’ of DLP from the spinning color wheel.
  4. Contrast – A measurement/description of the differences between the white and black colors in a projected image.
  5. Washout – When the projected image is too bright or has too much white light is reflecting, detracting from the overall image quality.
  6. Wipeout– America’s Largest Obstacle course game show.

Thanks for Reading and Asking Your Questions!

Do you have more ‘dumb’ questions? Share your questions here and we will get you an answer.

Did you find this blog post helpful? Connect with us and #TeamExertisAlmo over on LinkedIn.

Ashley Nichols, Dir BizDev

Ashley Nichols | CTS, DSCE

Director of Business Development

 

Supported Manufacturers: Sony

John Borns, BDM

John Borns | CTS, DSCE

Business Development Manager

 

Supported Manufacturers: Legrand AV (NE, SE, MW) – Chief, C2G, Da-Lite, Luxul, Middle Atlantic, Vaddio, Wiremold

Edition 2 of “This May Be a Dumb Question, but…”

This Blog Series is written by Exertis Almo's Business Development Managers: 
Ashley Nichols, CTS, DSCE, and John Borns, CTS, DSCE.

Welcome back to the 2nd edition of “This may be a dumb question, but…”, a now recurring blog series where two industry ‘veterans’ (or newbies, depending on who you talk to) help you find useful answers to the questions you’re too afraid to ask. Our 1st edition went over AV over IP, HDBaseT and RS-232, so follow this link if you want to learn more about those topics. This edition is all about Projection, so let’s get to the questions:

QUESTION
What is the difference between all of the different projector technologies? I see 3LCD, DLP, LCOS, Laser, Lamp, etc., and I don’t understand what the difference is and when to use them.

ANSWER

Hot Take: Projection is more complicated than your basic digital signage display. Yep, I said it. So many variables go into projection and choosing the right fit for your application, so it is no wonder we received so many questions around this topic. First, we need to separate the two parts of this question: the light source or light engine, and what I will refer to as the ‘color source’ or chipset1 for the purpose of this blog. I will keep this as short and simple as possible, but the two parts of this question will be broken up in this edition, and then in edition 3.

The light source, in this instance, is when you are looking at a lamp vs. a laser projector. Though there are still lamp projectors manufactured today, many of the top projection manufacturers in the professional space are moving to a laser light source. Why is this? Though lamp projectors are typically less expensive up front, the overall cost and maintenance of replacing lamp bulbs over the life of the projector brings the cost near equal. For reference, let’s say ‘Lamp-Based Projector A’ is $1,500 MSRP, and ‘Laser Projector B’ is $2,600 MSRP. The average projector lamp bulb only lasts 2,000 hours (8 hours a day, 5 days a week for about a year), so you will be paying to change the lamp bulb almost yearly. Additionally, the brightness (or lumens2) begins to fade over the lifetime of the bulb, which negatively affects the image and overall color accuracy. I have broken a light bulb that was $1.50 when trying to change it in my ceiling fan, so I also would not trust myself as a client to change a $900 bulb in a $3,000 projector every other year, which means someone has to roll a truck4 to change the bulb, further adding to the overall cost of ownership.

Laser projector brightness, or lumens, will eventually fade as well, but it is a much slower transition, and typical laser projectors are made to run 8 hours a day, 5 days a week for around 10 years (or 20,000 hours) with as little degradation as possible. Laser projection also runs physically cooler than a lamp bulb, which allows for higher brightness projectors to have longer lifespans, since heat and electronics don’t typically play nicely together over a long period of time. In commercial settings (read: anything other than your backyard projector movie night) I’d recommend going with a laser projector for the cleanest, longest lasting option possible.

laser projection
QUESTION
I’m overwhelmed by the screen options out there. How do I know when to use each type of screen?
ANSWER

This is a great question. I was also completely dumbfounded when I first learned that projection screens were anything more than just a piece of blank white fabric. There’s actually a surprising amount of chemistry and sorcery that goes into each screen surface. If you’re going to buy tires for your car, you need to consider several factors to come to the right choice. Are you going off-road a lot? Do you need tires that can handle the snow? How often do you compete in underground drift races? Choosing the right screen requires a similar approach. Only by knowing the intended purpose of the projection system can you come to the right surface. In some cases, a standard Matte White5 screen will work fine. However, in many cases, using those screens will create some undesirable outcomes. I’m going to highlight two of the most common challenges we face in screen surface selection below. In a future post, we will look more into optimizing your screen surfaces to really get the best results possible.

  1. Laser Projection. Ashley just described all of the advantages of laser projection above. It’s not uncommon for an end user to upgrade to a laser projector without also upgrading their screen. This is a common mistake, and it can create some unfortunate consequences. A key concern is that here is an unwanted speckling effect when you use a laser projector on an older textured matte white screen (see image below). To solve this problem, many manufacturers have created tensioned screens with very flat surfaces. When upgrading to a new projector technology, it’s critical to also update your screen to one that is designed for that type of projection. Thankfully, our friends at Da-Lite have a screen surface technology chart available to help you with these questions.
  2. Ambient Light. Probably the biggest concern in projection is getting the system to be bright enough to get a quality image. You’re probably thinking that the best way to solve this issue is to just get a bright projector, and you’re not necessarily wrong. However, unless you have an unlimited budget (if you do, call me, I have some great ideas), that may not always be on the table. Other options here either are to use a screen that adds gain6 or to use an ambient light rejecting screen7. Screens that add gain use chemistry and witchcraft to make the screen actually appear brighter (usually done at the cost of limiting the viewing angle8). Ambient Light Rejecting Screens will block other wanted light sources (such as overhead light above the screen) from washing out the image. See Da-Lite’s Parallax screen below as an example. These are great options in rooms where there is a lot of sunlight or no controllable lights. Luckily, our friends at Da-Lite have a very handy screen brightness calculator to help you figure out the best screen for your space (notice a trend?). Again, we’ll explore some of the more application specific surfaces in a future post. There’s obviously a lot more to consider here.
laser projection

example of unwanted speckling effect on screen

ambient light

example of ambient light on Parallax screen

Vocab Test Time!

Are these the most detailed definitions? No – we are not a dictionary, nor the AVIXA CTS Prep book. Will someone message us later telling us how much we missed? Possibly. After reading this post, will you have a basic working knowledge of these terms and why they matter? We hope so. Plus, we are 99% sure they help you school your uncles while you play Trivial Pursuit during the holidays. 🎄

  1. Chipset – Another widely-used term that vaguely means a set of electronic components that are wired together on a circuit. You will hear this term in regard to projectors, displays, but also anything from PCs to cars, to the fancy $400 toasters on Amazon that have a screen to show you how ‘toasty’ your bagels can get. You will hear this term more in Edition 3 if you want to Google it now.
  2. Lumens – Basically, this is a measurement of the light visible to the human eye. If you Google it, you will see some of the below terms, as well as more knowledge into the specifics of this term.
  3. Lumière – Talking candle that lives in a mansion with a reclusive beast. 🕯️
  4. Roll a Truck – Fun way to say send out a technician to do a task in person, which translates into $$.
  5. Matte White – The most common, basic, and boring form of a projection screen. Probably what you had in your high school classroom.
  6. Screen Gain – The amount of additional brightness that a screen can add to the system. Usually measured as something like 1.1 or 1.3, which means that it can reflect back an additional 10% more brightness or 30% more brightness.
  7. Ambient Light Rejection (ALR) – Screens that have the ability to block out some or all light coming from top the screen. This means that sunlight or overhead ceiling light will not affect the projected image.
  8. Viewing Angle – A measurement of how far off to either side of the screen you can stand and still be able to see the projected image well.

Thanks for Reading and Asking Your Questions!

Do you have more ‘dumb’ questions? Share your questions here and we will get you an answer.

Did you find this blog post helpful? Connect with us over on LinkedIn.

Ashley Nichols, Dir BizDev

Ashley Nichols | CTS, DSCE

Director of Business Development

Supported Manufacturers: Sony, Panasonic and our OWN brands – Mustang

John Borns, BDM

John Borns | CTS, DSCE

Business Development Manager

Supported Manufacturers: Legrand AV (NE, SE, MW) – Chief, C2G, Da-Lite, Luxul, Middle Atlantic, Vaddio, Wiremold

Five Ways to Use Futuristic AI Right Now

Unless you’ve been living under a rock for the entirety of 2020 — though we don’t blame you if that’s what you were going for — you have probably been inundated with blogs and posts talking about the “new normal” or “these unprecedented times.” This won’t be one of those posts. Mostly. We at Sony like to refer to this time, instead, as the “new now.” Knowing what we know now (in the “new now”), there’s a lot we wished we had in the realm of technology when COVID-19 first emerged. But, as it turns out, many of the technology solutions we needed all along already existed! One of them is the REA-C1000 Edge Analytics Appliance from Sony, who must have had a premonition when it released the product prior to 2020; the REA-C1000 has been a triumphant success to enable continued meeting, teaching and worshipping together when we can’t actually physically be together.

The device uses artificial intelligence (but think more imaging and recognition and less freaky “I, Robot” movie scenes) to add upgraded features to PTZ cameras that revolutionize the presenter and audience experience — transforming how content is delivered and received. Global pandemic or not, the REA-C1000’s features, which we’ll break down below, can absolutely be put to use for hybrid applications today. What’s more, they’ll still be relevant when we are all back together and breathing the same recycled air.

Read on to see how the REA-C1000 Edge Analytics Appliance, Sony’s AI-based video analytics solution, brings us five ways to use AI in video presentation content — not just in the future but right now.

1. Handwriting Extraction Technology

Many homes are currently home to e-learning with elementary or middle school-aged kids. This presents some real challenges for the students and the teacher when trying to show complex problems or concepts to remote participants. This is a perfect example of where using AI in video makes perfect sense — to enhance education. The Handwriting Extraction feature license on the REA-C1000 can help.

Using the handwriting extraction feature would allow the presenter (the teacher) to use a standard white or black board to write on or solve problems behind them. As they finish, the REA-C1000 picks up the writing and creates an overlay in front of them on screen.

The instructor is still in the shot, standing “behind” the information and pointing out important features, without blocking the audience’s view of the information. The image above shows the overlay at around 30% opacity, but that’s adjustable based on the comfort level of the instructor/students. It can even be dialed up to 100% for camera-shy presenters.

2. Keep Presenters and Speakers in Frame At All Times

PTZ cameras have come a long way, but using AI technology alongside PTZ cameras pushes the possibilities further. Using four points of recognition — motion detection, face detection, color pattern recognition and shape recognition — the REA-C1000 uses highly accurate critical thinking to take the place of a human camera operator. The device’s PTZ Auto-Tracking feature license is as straightforward as it sounds — but where Sony has done it right is that the REA-C1000 requires no external lanyards that can be lost or broken. 

The ideal application for this technology is your conference and/or house of worship cases with someone on a stage that may want to move about. Or in your lecture or training halls where, again, someone may be moving back and forth to gesture, turning their back to the audience but still remaining in the shot. The camera will pan with them as they walk back and forth, even when others join them on stage. That one-to-one relationship makes Sony’s solution unique while remaining budget-friendly, because the auto-tracking license is actually free with the purchase of the REA-C1000 until March 31, 2021. The feature will require a Sony PTZ camera (which you were probably going to use anyway, right?) due to the software coding. 

3. Involve the Audience

The third REA-C1000 highlight that brings futuristic AI to video right now is its Close-Up by Gesture feature license — allowing you to involve your audience as much as you would the presenter. This is an excellent feature for the hybrid classroom or town hall, offering two points of view: one camera focused on the main presenter and another camera focused on the audience. When an audience member stands to speak, the REA-C1000 will zoom in on the speaker until they are finished and sitting down again.

4. Create Great Content — Without Specialists and Extreme Costs

Next up, possibly our favorite feature bringing AI to video presentations today, is the REA-C1000 Chroma Key-less CG Overlay: a budget-friendly way to create a studio or green screen without the green screen. With this feature, you can create amazing content in real time without a dedicated studio or specialized content creators. Using AI, the REA-C1000 can use any-color static wall to create a background of your choosing. These backgrounds can be aesthetically pleasing images, videos or even dynamic presentations. Any content, images or videos you can access with your computer, you can use as a background using this feature. Then, use your computer monitor as a focus monitor to gesture.

Why does this matter? Because having full-scale studios on-site can be incredibly — and we mean incredibly — costly: Between cameras, lighting and the real estate itself, you’re looking at five- and six-figure totals. Alternatively, many companies or individuals are choosing the “Airbnb of studio rentals” model, renting studio spaces by the hour or day. Looking at that cost structure in cities like New York City or Los Angeles, a rental studio space can be anywhere from $50 to $70 per hour for up to four people. Additional equipment — like the camera, one production light, the green screen, etc. — runs anywhere from $10 per item to $250 per item, or it’s priced per hour (source: peerspace.com).

If you’re a business that regularly produces training videos or commercials, or you wish to regularly present a professional live session but have limited resources, the REA-C1000 is the perfect middle ground between full-scale broadcast studios and third-party rentals. And the Chroma Key-less CG overlay feature is ideal for low-budget “studios” as a way to record professional-looking videos.

Sony’s solution draws anyone who wants to give the best, most immersive presentation possible while we cannot meet in person. Think of this in the context of corporate video production. Or even consider something as out of the box as a real estate professional giving a “live” tour of a space, not just on an iPhone. Taking into account the current climate of caution over contamination, owning the equipment to use at your disposal is still an invaluable resource that pays for itself over a handful of these rentals, and ten-fold over creating a full-scale production studio.

5. Focus Area Cropping

The fifth and final feature we’ll share today that allows for futuristic AI tech right now: Focus Area Cropping. This one may seem to have less of a wow factor than some of the others, but it has great importance when you or your client are trying to create a special experience for the audience and the presenter but don’t have the staff for a controller — or the budget for extra heads or other expensive hardware or software. Whether you are streaming your worship service over a web platform (which the REA-C1000 can do with its RTSP/RTMP port) or, when we are back in large groups, hosting a conference with a keynote speaker, you can be sure their movements, body language and facial expressions will be captured to emulate the full experience, no matter what.

In the “new now,” the REA-C1000 is — dare we say it, despite our earlier stated dislike for overused buzzwords — a true game-changer for so many applications; it creates impactful video presentation content that previously would have required significant time, expenses and human resources to produce. It’s hard to fit all the proof points into one story, so don’t just take our word for it: Check out this case study from the University of Hiroshima on how the school integrated Sony’s solution into its daily routine for professors teaching via multiple campuses simultaneously.

Want to learn more? Listen to this podcast on the Edge Analytics Appliance — it covers specs, use cases and more. And when you’re ready, reach out to your Almo sales rep to see a live demo of the product and get more information.

Note: The five features discussed today require the one-time purchase of a license for that feature. But good news: You get a 60-day trial for each feature with your purchase of a REA-C1000 device to test it out for yourself.

Ashley Nichols, CTS

Business Development Manager
Email: [email protected]
Toll-free: 888.420.2566 x6229
Fax: 267-350-0351

One Meeting Planner’s Challenge Post COVID – the Answer is Short

At a recent gathering of professional meeting planners, they tapped into my AV industry experience to discuss how to keep people socially distanced but not have to rent a ton more meeting space while providing a great AV experience. I told them the answer was short… short throw!

I recently had the privilege to be involved in a meeting planner’s conference with a mix of agencies and in-house corporate planners to discuss the business of getting back to in-person meetings. Part of my role at Almo is to help plan and produce our own E4 Experience traveling show among dozens of other smaller tradeshows, events and summits with the help of an amazing events team. As the turmoil of COVID continues to linger, we all compared notes about “how are we going to do it… and SAFELY?”.

One major expense for any event is the rental of the meeting space – it’s usually wrapped into a package with catering and sleeping rooms but when you have a local event like an E4 Experience, the meeting space rental can be pricey. My fellow meeting planners there do not have the advantage of their own “house AV” comprised of many CTS Certified business development managers such as Brian Rhatigan to help spec and design the most effective solution.

The usual gold standard for a meeting is rear projection for that “wow” factor of the big stage with multiple screens without seeing that ugly stand and hoping someone does not walk in front of it, trip on a cable(s)… you get the picture. However, we all know that takes up a lot of space. Now that we have to socially distance six feet apart and still want that wow factor and NOT break the bank on meeting space, we’re lucky to have in our arsenal the short throw projector which, if used properly can still provide the “wow”.

Epson’s PowerLite Pro L series offers a full line of high-bright laser projectors ranging from 6,000 lumens up to 30,000 lumens, all with optional interchangeable lenses including those for short throw applications.  When it comes to rear-projection, a typical projector will require about 25 feet of clearance behind the screen.  This can be reduced significantly by using one of Epson’s short throw lenses shrinking the required distance down to under 10 feet.  For a 75-foot-wide ballroom this gives you an additional 1875 square of usable space while maintaining the clean and clutter-free look of rear-projection.

My meeting planner colleagues were also discussing various ways to produce more revenue for sponsorships or reduce the cost of printing large signs and paying for rigging for, in many cases, union labor (not to mention the environmental impact of all that vinyl in landfills). I introduced them to the Epson LightScene laser projector to empower them with the creative freedom and flexibility to tell the client’s story, in the way they envision it. Forget the old gobo lights!!! Engage your audience by designing a visually compelling and immersive experience.

It was SO great being IN-PERSON with these folks! The ideas flowing, exchanging terrific keynote speakers, wonderful venues – there’s nothing like being in person. As part of the AV industry, I was thrilled to share some new tech with them to help us all get back together.

LESS IS MORE. ONE SECRET TO ALMO PRO AV’S SUCCESSFUL 10 YEARS.

As Almo Professional AV prepares to celebrate 10 years in operation as business unit of Almo Corporation I feel grateful and proud to be part of this great organization. Looking back to 2009, at the origination of the division we had no vendor partners and no customers while today we have thousands of loyal customers and amazing partnerships with approximately 50 of the most desired manufacturers in the industry.

While many key factors have contributed to our mutual success with our customers and vendor partners, one key driver is our intentional strategy to keep our line card relatively narrow and focused compared to other distribution companies. When it comes to displays and projectors we aim to partner with a wide range of vendors to support the demand in the marketplace, however in other product categories we have chosen to partner with only a small number of manufacturers that we feel to be the best in class. This strategy has helped Almo to remain important to our existing partners as well as enabled us to better support a more narrow set of vendors.

With this, you won’t see very many new vendor partnerships announced by Almo each year.   However, when it makes sense for a new partnership in the eyes of Almo and the potential vendor and we feel the partnership will bring value to our loyal customers then we will move forward with a new product offering.   The last six to nine months we have found ourselves in a situation where there were several new partnerships taking place including D-Link, Ecler, VDO360, and Vivitek.

If you have had the opportunity to attend any of our recent E4 Experience events you likely heard our keynote speaker Gary Kayye talking about the emergence of AV over IP solutions. If you think about it, all sorts of professional A/V products now have a network port and can live on an IP network. The addition of D-Link now gives our customers the ability to include the networking solutions (i.e. switches, wireless routers, etc.) along with the rest of the gear they are sourcing from Almo for their given project.

Ecler, while probably not a familiar name to you here in the United States has been providing high quality commercial audio solutions in Europe for over 50 years. Through our partnership as the exclusive distributor in the United States Almo can offer our customers high quality proven products including loudspeakers, amplifiers, DSP, mixers & more at competitive pricing all while helping dealers to maintain healthy margins on their projects.

When it comes to soft codec based video conferencing, Zoom has taken the world by storm so it’s only natural that manufacturers are offering products that integrate with soft codec platforms. One of the challenges is including different components from different vendors that may or may not be tested or certified by Zoom potentially leading to support issues post installation.   One of the things that attracted us to VDO360 was their single SKU, single box ZoomRoom kit that includes the camera, audio conferencing, PC, tablet controller and all required cabling, leaving out only the display.

While we were already well served with our existing projector manufacturer relationships, the addition of Vivitek adds a little more depth to our line up and will provide our customers with quality projector hardware at price points that may have not been previously available, with strong programs to enhance dealer’s margins.

Please visit www.almoproav.com or contact your Almo Account Manager for additional details on these solutions. Next stop, InfoComm 19.  Register with code ALM123 for a free pass.

Pin It on Pinterest